skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Hyosim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Additive friction stir deposition (AFS-D) is considered a productive method of additive manufacturing (AM) due to its ability to produce dense mechanical parts at a faster deposition rate compared to other AM methods. Al6061 alloy finds extensive application in aerospace and nuclear engineering; nevertheless, exposure to radiation or high-energy particles over time tends to deteriorate their mechanical performance. However, the effect of radiation on the components manufactured using the AFS-D method is still unexamined. In this work, samples from the as-fabricated Al6061 alloy, by AFS-D, and the Al6061 feedstock rod were irradiated with He+ ions to 10 dpa at ambient temperature. The microstructural and mechanical changes induced by irradiation of He+ were examined using a scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and nanoindentation. This study demonstrates that, at 10 dpa of irradiation damage, the feedstock Al6061 produced a bigger size of He bubbles than the AFS-D Al6061. Nanoindentation analysis revealed that both the feedstock Al6061 and AFS-D Al6061 samples have experienced radiation-induced hardening. These studies provide a valuable understanding of the microstructural and mechanical performance of AFS-D materials in radiation environments, offering essential data for the selection of materials and processing methods for potential application in aerospace and nuclear engineering. 
    more » « less
  2. null (Ed.)
  3. As one candidate alloy for future Generation IV and fusion reactors, a dual-phase 12Cr oxide-dispersion-strengthened (ODS) alloy was developed for high temperature strength and creep resistance and has shown good void swelling resistance under high damage self-ion irradiation at high temperature. However, the effect of helium and its combination with radiation damage on oxide dispersoid stability needs to be investigated. In this study, 120 keV energy helium was preloaded into specimens at doses of 1 × 1015 and 1 × 1016 ions/cm2 at room temperature, and 3.5 MeV Fe self-ions were sequentially implanted to reach 100 peak displacement-per-atom at 475 °C. He implantation alone in the control sample did not affect the dispersoid morphology. After Fe ion irradiation, a dramatic increase in density of coherent oxide dispersoids was observed at low He dose, but no such increase was observed at high He dose. The study suggests that helium bubbles act as sinks for nucleation of coherent oxide dispersoids, but dispersoid growth may become difficult if too many sinks are introduced, suggesting that a critical mass of trapping is required for stable dispersoid growth. 
    more » « less
  4. We studied the effects of internal free surfaces on the evolution of ion-induced void swelling in pure iron. The study was initially driven by the motivation to introduce a planar free-surface defect sink at depths that would remove the injected interstitial effect from ion irradiation, possibly enhancing swelling. Using the focused ion beam technique, deep trenches were created on a cross section of pure iron at various depths, so as to create bridges of thickness ranging from 0.88 μm to 1.70 μm. Samples were then irradiated with 3.5 MeV Fe2+ ions at 475 °C to a fluence corresponding to a peak displacement per atom dose of 150 dpa. The projected range of 3.5 MeV Fe2+ ions is about 1.2 μm so the chosen bridge thicknesses involved fractions of the ion range, thicknesses comparable to the mean ion range (peak of injected interstitial distribution), and thicknesses beyond the full range. It was found that introduction of such surfaces did not enhance swelling but actually decreased it, primarily because there were now two denuded zones with a combined stronger influence than that of the injected interstitial. The study suggests that such strong surface effects must be considered for ion irradiation studies of thin films or bridge-like structures. 
    more » « less